Barry

Forum Replies Created

Viewing 10 posts - 21 through 30 (of 30 total)
  • Author
    Posts
  • in reply to: Private: Quartz CAN Form in a Melt! #30932
    Barry
    Participant

    Hi Courtney,

    The experiments I was talking about take place with maybe a percent or two of water, so yes, they involve ACTUAL MELTED ROCK in an environment that includes a small amount of water vapor. (Why WOULDN’T natural magma have some water around? Water vapor comes out of volcanoes, after all.) This is FAR different than growing quartz in an autoclave, for heaven’s sake.

    So part your argument is called a “straw man”, which is an actual term people use in rhetoric and logic (as opposed to “the Mingle”). This means that you disprove something your opponent doesn’t actually claim, and pretend they do claim it. You say that in “modern science’s paradigm,” igneous rocks are made from a “magmatic type (or heat only) melt.” However, this is patently false. Here’s a challenge for you. Go dig out a bunch of igneous petrology books from a university library, and find me a single one of them that says magma isn’t supposed to have any water vapor present. I’m betting you can’t do it, except maybe if you go back over 100 years. In fact, why don’t you look in Paul Hess’s book Dean Sessions quoted from? He obviously thinks that book is a representative source for the field of igneous petrology.

    Another part of your argument is called “false equivalence.” Here’s how it’s explained on Wikipedia.

    A common way for this fallacy to be perpetrated is one shared trait between two subjects is assumed to show equivalence, especially in order of magnitude, when equivalence is not necessarily the logical result. False equivalence is a common result when an anecdotal similarity is pointed out as equal, but the claim of equivalence doesn’t bear because the similarity is based on oversimplification or ignorance of additional factors.

    For example, you say I am “using a Universal Model style experiment which includes water, pressure and heat to try to disprove the Universal Model and then claim that crystals really do come from melted magma.” Really? So growing crystals from a melt in the presence of a little water vapor is the same as growing them from aqueous solution in an autoclave? Please. And claiming minerals never come from a melt, when this is false, is equivalent to quoting a petrologist saying minerals come out of a hydrous melt, and then not bothering to specifically point out to readers that “hydrous” means there was water vapor present? I don’t think so.

    So back to the original question. Why do you think Dean Sessions repeatedly says you can’t grow quartz and the other minerals in granite from melted rock, when his sources say you can, as long as a little water vapor is present?

    I have a blog post up called “Quartz is Not Glass. So What?” if you want more info about this. I would link it here, but every time I try to link to my blog, the moderator here deletes the post.

    in reply to: Rules for moderating comments? #30887
    Barry
    Participant

    Yeah, they deleted my last couple comments without explanation, too. I’m assuming it’s because I included a link to my website.

    in reply to: Ocean sediment deposits #30727
    Barry
    Participant

    Hi Carter,

    As with any long-term process, nobody has time to wait around and watch it happen, but what they can do is drill down through sediment layers and examine them to see how they change with depth. Assuming the lower layers were deposited first, that makes for a good way to study how sediments change as they get buried deeper and deeper. Here is one such article:

    http://www.sciencedirect.com/science/article/pii/S0166516215000087

    You can find more by Googling “diagenesis borehole study” (without the quotes).

    in reply to: Ocean sediment deposits #30725
    Barry
    Participant

    Thanks, Carter!

    Also, the process by which thick layers of limestone can be cleaned up, so to speak, is called “diagenesis”.

    https://en.wikipedia.org/wiki/Diagenesis

    in reply to: Private: Earth’s mass and Universal Gravitation #30720
    Barry
    Participant

    Dear UM Team,

    Your admission that your experiment was faulty restores some of my faith in you.

    However, you say, “Carter is correct regarding his mention of satellite calculations being based on an entirely different formula.” This is sort of a dodge, don’t you think? As I mentioned, the universal gravitational constant and the Gaussian gravitational constant are mathematically linked in a very simple way, so it’s not really an ENTIRELY different formula, is it? In fact, Stuart was correct to say that our predicted orbits for satellites would be way off if the universal constant was off. This is a MAJOR problem for the UM. Seriously.

    Barry
    Participant

    Dear Rose,

    My experience has been that the UMers are engaging in self-fulfilling prophecy. They have “always expected” that regular scientists will reject their claims because they are closed-minded, and so when regular scientists do reject their claims, it must be due to their closed-mindedness! After all, the UMers “always expected” it, so it’s pretty much a scientific prediction that came true!

    Again, please take a look at the forum discussion I linked. They can’t even take the most obvious criticisms in stride. They seem like nice people who simply aren’t very good at facing challenges to their beliefs.

    in reply to: Ocean sediment deposits #30718
    Barry
    Participant

    Hi UM Team,

    Here’s a cut-and-paste quotation from Carter’s post.

    “In fact calcium carbonate deposits are gigantic with no adequate explanation for their origins and are not being formed today.”

    So he says calcium carbonate deposits are NOT being formed today.

    Was he explaining the UM incorrectly?

    in reply to: Ocean sediment deposits #30712
    Barry
    Participant

    Dear Floyd,

    There are a number of problems with Carter’s answer, but here is one I can correct off the top of my head. Calcium carbonate deposits ARE being formed today. The conditions are usually right in warm, shallow seas, e.g., in the Bahamas. If you want more information (and pictures!) ask Scott Ritter in the BYU Geological Sciences department. He has done a lot of work on carbonate deposition in the Bahamas.

    Sincerely,

    Barry Bickmore
    Professor of Geological Sciences
    Brigham Young University
    Provo, Utah

    Barry
    Participant

    Hi Rose,

    No, the UM has not been peer-reviewed by actual scientists, and its concepts are not accepted. Normal scientists would typically consider the UM to be a particularly bizarre incarnation of pseudoscience. To get just a tiny sampling of what normal scientists would think is wrong with the UM, see the following forum thread:

    https://universalmodel.com/topic/earths-mass-and-universal-gravitation/

    BYU asks applicants to take the ACT, which has a science section, so your kids might really botch that if they are UM believers. I think BYU will also accept the SAT, which does not have a science section, but most students at BYU have to take classes called Physical Science 100 and Biology 100. I teach PS 100, and I can tell you unequivocally that a UMer would be at a terrible disadvantage in there.

    Sincerely,

    Barry Bickmore
    Professor of Geological Sciences
    Brigham Young University
    Provo, Utah

    in reply to: Private: Earth’s mass and Universal Gravitation #30709
    Barry
    Participant

    Hi Stuart!

    Unfortunately, there are many problems with Carter’s answer to you. Some of these have recently been addressed in the comments on the Universal Model’s YouTube channel.

    https://www.youtube.com/watch?v=jqOlCyfc4JQ

    In this reply, I’m going to paste in some of the posts from the YouTube comments, and you can click the link above to see the full conversation.

    Enjoy!

    Barry Bickmore
    Professor of Geological Sciences
    Brigham Young University

    ————–
    William Meservy:

    Yes, that’s more correctly said. Thanks for pointing that out.

    I would love it, however, if one of the “Universal Model” backers would have the decency to explain to us all how we are regularly able to put satellites into orbit if the mass of the Earth is 1/3 what mainstream science says it is. Did NASA just get lucky the first time?

    Surely, you they don’t expect people to pay $70.00 for a book before better explaining how they came about their alternative theory that the mass of the Earth is only 1/3 what we know it to be.

    —————
    Universal Model:

    See our forum response to a question similar to this at the following link:

    https://universalmodel.com/topic/earths-mass-and-universal-gravitation/

    —————
    Barry Bickmore:

    So the answer is that they have supposedly measured a new value for the universal gravitational constant, G (from Newton’s law of gravitation). It says,

    “UM researchers have replicated this experiment and have found that air resistance actually has an appreciable effect on the pendulum, something that Cavendish did not account for. His experiment needs to be redone in a vacuum so that the air doesn’t slow down the movement of the pendulum.”

    However, the Cavendish experiment HAS been done in a vacuum. See this:

    http://physicsworld.com/cws/article/news/2001/aug/03/helping-big-g-get-back-on-track

    —————-
    William Meservy:

    Maybe they didn’t realize that the Cavendish experiment (or its equivalent) has been repeated many more times than once in a vacuum (you can scroll through to find a slew of them):
    http://iopscience.iop.org/article/10.1088/0034-4885/60/2/001/pdf

    So the UM’s new gravitational constant to calculate the Earth’s mass at about 1/3 of what is known (roughly 2*10^24 kg) would have to be something around 1.8*10^-10 m^3 kg^-1 s^-2 (using a 6371 km radius of the Earth and gravitational acceleration of 9.8 m/s).

    That doesn’t hold up to aggregate experimental values done in a vacuum. Bad news guys.

    (I’ve edited this to highlight the fact that the Universal Model requires a new gravitational constant that is off by at least one order of magnitude to produce it’s stated mass of the Earth. Their complaint that the Cavendish Experiment hasn’t been completed in a vacuum is false. It has many times–and those experiments lend to the validity of the experiment whether it is completed in a vacuum or not in a vacuum).

    —————–
    Russ Barlow:

    We are not able to discuss fully our position about calculations regarding a revised gravitational constant and an effective change to the Earth’s mass at this time. While we acknowledge the oft-repeated Cavendish experiment, there are other research data we are not ready to publish or discuss so we must withdraw from this subject at present. This matter will be addressed at length in Volume 3. Thank you for your feedback.

    —————–
    Barry Bickmore:

    So if all those Cavendish-type experiments were way off (except the one you guys did in your garage), can you at least admit that they weren’t way off because of air resistance? I’m asking because I want to see if you guys are even capable of admitting that one of your arguments doesn’t hold water. <—–pun intended

    —————–
    Barry Bickmore:

    Russ, since you guys are still working out some of the kinks in your measurement of the universal gravitational constant, I thought I would help you out by posing a few questions you might want to address, so as to refine your argument.

    Universal Model, Vol. 1, p. 107 says this about what is supposedly wrong with previous measurements of the universal gravitational constant, G:

    “However, there is one major flaw in the experiment leading to the Cavendish Experiment. Unlike the Earth, the lead balls are not in outer space, and thus, the balls, restricted by the air and influenced by the Earth’s gravity rendered incorrect data. Their attraction should have been measured in a vacuum, in low gravity. Air, a denser medium than the vacuum of space, along with the attractive gravitational force of the Earth, slowed the balls’ oscillation rate. Cavendish neglected to account for the reduced oscillation in the original experiment, leading to an incorrect gravitational constant and errors in the Earth’s density estimates. As we will learn in subchapter 18.4, the New Mass of the Earth, the Earth’s density, recalculated to approximately 2.3 g/cm^3 using the physics of gravitational atuaction and the new geological discoveries outlined in this and other chapters, renders a truer density of the Earth that aligns with empirical observations. We next examine the geological nature of the Earth’s density.”

    As I pointed out above, the value of G has been measured in a vacuum, and Will Meservy chimed in with the observation that this has actually been done many times. Well, it turns out that G has even been measured in a vacuum AND in freefall, negating the effects of gravitational attraction by nearby bodies such as the Earth! The paper was published in Science Magazine in 1998. Here’s the paper (figures at the bottom):

    https://www.ngs.noaa.gov/PUBS_LIB/BigG/bigg.html

    The answer they got was G = (6.6873 + 0.0094) x 10^-11 m^3 kg^-1 sec^-2, which is very close to what everyone else (except you) has gotten, even when they were doing it in air and Earth surface gravity. The value implied by Cavendish’s original experiment in 1798 (!!!!!!) was 6.754×10−11 m^3 kg^−1 s^−2, which is only 1% off the 1998 measurement!

    So here’s my first few questions:

    1. I can imagine that you guys might have set up a vacuum chamber in your garage to perform such a measurement, but what did you do to offset the effects of the Earth’s gravitational field? (Did you launch a rocket into orbit? Did you put the apparatus into freefall like the guys who published in Science? Even if you totally botched the experiment, I would be very impressed if you even attempted either one of those feats.)

    2. Why do you suppose your experiments imply very large effects for air resistance and the Earth’s gravitational field, when the guys who published in Science Magazine observed such minuscule effects? (For instance, could it be that you did your experiments in someone’s garage with a cheap vacuum pump that vibrates, and cars were driving by, and you didn’t have an active vibration cancellation table to negate these effects, so it threw off the oscillations of your apparatus? I’m just throwing out some wild guesses, but maybe they will serve as food for thought.)

    More questions in the next post.

    —————–
    Barry Bickmore:

    Here’s another issue that weighs on my mind. As Will Meservy brought up above, if the true value of G is vastly different than what has been accepted, how do we so successfully put spacecraft into orbit and such? The owner of this YouTube channel replied with a link to this “official” forum response by one Carter Brown to a similar question.

    https://universalmodel.com/topic/earths-mass-and-universal-gravitation/

    Here’s the relevant part of Carter’s answer:

    “Even though this number has been ‘established’, there is another number that is usable and even preferred in space technology. That is called the Gaussian Gravitational Constant, k. It was derived by Carl Fredrich Gauss based on the average orbital period of the Earth. This number does not require a specific mass of a celestial body, and is in fact the number that satellite scientists will use in their formulations and space missions.”

    “So, in essence, space missions successfully work because scientists use the right proportions for the mass of planets and asteroids, even though the specific mass isn’t accurately known.”

    I had never heard of the Gaussian Gravitational Constant before, so I looked it up on Wikipedia.

    https://en.wikipedia.org/wiki/Gaussian_gravitational_constant

    I thought of a couple different ways to mathematically test Carter’s answer, but before I go to all that work, I thought I’d raise a simpler issue, first. That is, the Wiki article shows the math to derive the Gaussian Gravitational constant (k), and shows that k has a very simple relationship with the universal gravitational constant, G. That is, k^2 = G by definition. So here’s my next question:

    3. If k^2 = G, then wouldn’t a wildly inaccurate value of G also imply a wildly inaccurate value of k? If so, then Carter didn’t really provide a valid answer to the question he addressed.

    I am confident that you guys will take these questions seriously, because as Chauncey Riddle, emeritus Professor of Philosophy at BYU said in his review of your book,

    “Sessions will possibly be proved wrong about some assertions he has made in his work. This is almost inevitable for anyone doing serious thinking and writing. But the finding of such errors will not be an embarrassment for Sessions. He will laud such finding, because that will mean that the cause of truth will be advanced. His purpose is to bring truth and light to important matters, and if his work stimulates others to produce more truth and light, even unto showing his work needs to be amended, he will be grateful. He will be grateful because he writes not to give the final word but to further the ongoing human inquiry into the powerful ideas about the true nature of the universe that give us all more understanding and power.”

    https://universalmodel.com/chauncey-c-riddle/

Viewing 10 posts - 21 through 30 (of 30 total)